919 research outputs found

    Slowing and stopping of chemical waves in a narrowing canal

    Full text link
    The propagation of a chemical wave in a narrow, cone-shaped glass capillary was investigated. When a chemical wave propagates from the wider end to the narrower end, it slows, stops, and then disappears. A phenomenological model that considers the surface effect of the glass is proposed, and this model reproduces the experimental trends.Comment: 8 pages, 5 figure

    Mode Selection in the Spontaneous Motion of an Alcohol Droplet

    Get PDF
    An alcohol (pentanol) droplet exhibits spontaneous agitation on an aqueous solution, driven by a solutal Marangoni effect. We found that the droplet's mode of motion is controlled by its volume. A droplet with a volume of less than 0.1μl0.1 \mu\rm{l} shows irregular translational motion, whereas intermediate-sized droplets of 0.1200μl0.1-200 \mu\rm{l} show vectorial motion. When the volume is above 300μl300 \mu\rm{l}, the droplet splits into smaller drops. These experimental results regarding mode selection are interpreted in terms of the wave number selection depending on the droplet volume.Comment: 4 pages, 5 figure

    Exploring Galaxy Evolution from Infrared Number Counts and Cosmic Infrared Background

    Get PDF
    Recently reported infrared (IR) galaxy number counts and cosmic infrared background (CIRB) all suggest that galaxies have experienced a strong evolution sometime in their lifetime. We statistically estimate the galaxy evolution history from these data. We find that an order of magnitude increase of the far-infrared (FIR) luminosity at redshift z = 0.5 - 1.0 is necessary to reproduce the very high CIRB intensity at 140 um reported by Hauser et al. (1998). z \sim 0.75 and decreases to, even at most, a factor of 10 toward z \sim 5, though many variants are allowed within these constraints. This evolution history also satisfies the constraints from the galaxy number counts obtained by IRAS, ISO and, roughly, SCUBA. The rapid evolution of the comoving IR luminosity density required from the CIRB well reproduces the very steep slope of galaxy number counts obtained by ISO. We also estimate the cosmic star formation history (SFH) from the obtained FIR luminosity density, considering the effect of the metal enrichment in galaxies. The derived SFH increases steeply with redshift in 0 0.75. This is consistent with the SFH estimated from the reported ultraviolet luminosity density. In addition, we present the performance of the Japanese ASTRO-F FIR galaxy survey. We show the expected number counts in the survey. We also evaluate how large a sky area is necessary to derive a secure information of galaxy evolution up to z \sim 1 from the survey, and find that at least 50 - 300 deg^2 is required.Comment: 18 pages LaTeX, PASJ in press. Abstract abridge

    Single cell analysis of neutrophils NETs by Microscopic LSPR imaging system

    Get PDF
    A simple microengraving cell monitoring method for neutrophil extracellular traps (NETs) released from single neutrophils has been realized using a polydimethylsiloxane (PDMS) microwell array (MWA) sheet on a plasmon chip platform. An imbalance between NETs formation and the succeeding degradation (NETosis) are considered associated with autoimmune disease and its pathogenesis. Thus, an alternative platform that can conduct monitoring of this activity on single cell level at minimum cost but with great sensitivity is greatly desired. The developed MWA plasmon chips allow single cell isolation of neutrophils from 150 μL suspension (6.0 × 105 cells/mL) with an efficiency of 36.3%; 105 microwells with single cell condition. To demonstrate the utility of the chip, trapped cells were incubated between 2 to 4 h after introducing with 100 nM phorbol 12- myristate 13-acetate (PMA) before measurement. Under observation using a hyperspectral imaging system that allows high-throughput screening, the neutrophils stimulated by PMA solution show a significant release of fibrils and NETs after 4 h, with observed maximum areas between 314–758 μm2. An average absorption peak wavelength shows a redshift of Δλ = 1.5 nm as neutrophils release NETs
    corecore